Description: Optimization in Banach Spaces by Alexander J. Zaslavski Estimated delivery 3-12 business days Format Paperback Condition Brand New Description The book is devoted to the study of constrained minimization problems on closed and convex sets in Banach spaces with a Frechet differentiable objective function. Publisher Description The book is devoted to the study of constrained minimization problems on closed and convex sets in Banach spaces with a Frechet differentiable objective function. Such problems are well studied in a finite-dimensional space and in an infinite-dimensional Hilbert space. When the space is Hilbert there are many algorithms for solving optimization problems including the gradient projection algorithm which is one of the most important tools in the optimization theory, nonlinear analysis and their applications. An optimization problem is described by an objective function and a set of feasible points. For the gradient projection algorithm each iteration consists of two steps. The first step is a calculation of a gradient of the objective function while in the second one we calculate a projection on the feasible set. In each of these two steps there is a computational error. In our recent research we show that the gradient projection algorithm generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. It should be mentioned that the properties of a Hilbert space play an important role. When we consider an optimization problem in a general Banach space the situation becomes more difficult and less understood. On the other hand such problems arise in the approximation theory. The book is of interest for mathematicians working in optimization. It also can be useful in preparation courses for graduate students. The main feature of the book which appeals specifically to this audience is the study of algorithms for convex and nonconvex minimization problems in a general Banach space. The book is of interest for experts in applications of optimization to the approximation theory.In this book the goal is to obtain a good approximate solution of the constrained optimization problem in a general Banach space under the presence of computational errors. It is shown that the algorithm generates a good approximate solution, if the sequence of computational errors is bounded from above by a small constant. The book consists of four chapters. In the first we discuss several algorithms which are studied in the book and prove a convergence result for an unconstrained problem which is a prototype of our results for the constrained problem. In Chapter 2 we analyze convex optimization problems. Nonconvex optimization problems are studied in Chapter 3. In Chapter 4 we study continuous algorithms for minimization problems under the presence of computational errors. The algorithm generates a good approximate solution, if the sequence of computational errors is bounded from above by a small constant. The book consists of four chapters. In the first we discuss several algorithms which are studied in the book and prove a convergence result for an unconstrained problemwhich is a prototype of our results for the constrained problem. In Chapter 2 we analyze convex optimization problems. Nonconvex optimization problems are studied in Chapter 3. In Chapter 4 we study continuous algorithms for minimization problems under the presence of computational errors. Author Biography Alexander J. Zaslavski is professor in the Department of Mathematics, Technion-Israel Institute of Technology, Haifa, Israel. He has authored numerous books with Springer, the most recent of which include Turnpike Phenomenon and Symmetric Optimization Problems (978-3-030-96972-1), Turnpike Theory for the Robinson–Solow–Srinivasan Model (978-3-030-60306-9), The Projected Subgradient Algorithm in Convex Optimization (978-3-030-60299-4), Convex Optimization with Computational Errors (978-3-030-37821-9), Turnpike Conditions in Infinite Dimensional Optimal Control (978-3-030-20177-7), Optimization on Solution Sets of Common Fixed Point Problems (978-3-030-78848-3). Details ISBN 3031126432 ISBN-13 9783031126437 Title Optimization in Banach Spaces Author Alexander J. Zaslavski Format Paperback Year 2022 Pages 126 Edition 1st Publisher Springer International Publishing AG GE_Item_ID:141671922; About Us Grand Eagle Retail is the ideal place for all your shopping needs! With fast shipping, low prices, friendly service and over 1,000,000 in stock items - you're bound to find what you want, at a price you'll love! Shipping & Delivery Times Shipping is FREE to any address in USA. Please view eBay estimated delivery times at the top of the listing. Deliveries are made by either USPS or Courier. We are unable to deliver faster than stated. International deliveries will take 1-6 weeks. NOTE: We are unable to offer combined shipping for multiple items purchased. This is because our items are shipped from different locations. Returns If you wish to return an item, please consult our Returns Policy as below: Please contact Customer Services and request "Return Authorisation" before you send your item back to us. Unauthorised returns will not be accepted. Returns must be postmarked within 4 business days of authorisation and must be in resellable condition. Returns are shipped at the customer's risk. We cannot take responsibility for items which are lost or damaged in transit. For purchases where a shipping charge was paid, there will be no refund of the original shipping charge. Additional Questions If you have any questions please feel free to Contact Us. Categories Baby Books Electronics Fashion Games Health & Beauty Home, Garden & Pets Movies Music Sports & Outdoors Toys
Price: 73.28 USD
Location: Fairfield, Ohio
End Time: 2024-12-07T03:49:03.000Z
Shipping Cost: 0 USD
Product Images
Item Specifics
Restocking Fee: No
Return shipping will be paid by: Buyer
All returns accepted: Returns Accepted
Item must be returned within: 30 Days
Refund will be given as: Money Back
ISBN-13: 9783031126437
Book Title: Optimization in Banach Spaces
Number of Pages: VIII, 126 Pages
Language: English
Publication Name: Optimization in Banach Spaces
Publisher: Springer International Publishing A&G
Subject: Numerical Analysis, General, Optimization
Publication Year: 2022
Item Weight: 7.8 Oz
Type: Textbook
Subject Area: Mathematics
Item Length: 9.3 in
Author: Alexander J. Zaslavski
Series: Springerbriefs in Optimization Ser.
Item Width: 6.1 in
Format: Trade Paperback